Description

Basic Properties of Determinants

  1. The determinant of the identity matrix is 11.

    • Scaling one row by a factor kk multiplies the determinant by kk.

      A=[abcd]\textbf{A} = \begin{bmatrix}a & b \\ c & d\end{bmatrix}

      Multiplying the first row by kk

      det([kakbcd])=kdet(A)\text{det}\left(\begin{bmatrix} ka & kb \\ c & d\end{bmatrix}\right) = k \cdot \text{det}(A)

    • Additivity

      det([a+ab+bcd])=det([abcd])+det([abcd])\text{det}\left(\begin{bmatrix}a + a' & b + b' \\ c & d\end{bmatrix}\right) = \text{det}\left(\begin{bmatrix}a & b \\ c &d\end{bmatrix}\right) + \text{det}\left(\begin{bmatrix}a' & b' \\ c & d\end{bmatrix}\right)

  2. A row exchange reverses the sign of the determinant.

    det([abcd])=det([cdab])\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) = -\text{det}\left(\begin{bmatrix}c & d \\ a & b\end{bmatrix}\right)

Using these properties allows you to derive many other properties of determinants!

Derived Properties of Determinants

  1. If A\textbf{A} has two equal rows, det(A)=0\text{det}(\textbf{A}) = 0. Let A=[abab]\textbf{A} = \begin{bmatrix}a & b \\ a & b\end{bmatrix}. By basic property 3: det([abab])=det([abab])\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = -\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) The only way this will hold true is if det([abab])=0\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = 0 From this, we conclude that if A\textbf{A} has two equal rows, det(A)=0\text{det}(\textbf{A}) = 0. If A\textbf{A} has two equal rows, this means that A\textbf{A} has linearly dependent rows. Consequently, we can conclude that if the det(A)=0\text{det}(\textbf{A}) = 0, the matrix has linearly dependent rows and is not invertible.

  2. Adding or subtracting a row to or from another row does not change the determinant. Let A=([abcd])\textbf{A} = \left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) Solving for the determinant after multiplying the first row by t and adding it to the first row gives: det([abc+tad+tb])\text{det}\left(\begin{bmatrix}a & b \\ c + ta & d + tb\end{bmatrix}\right) By basic property 2 and derived property 1:

det([abc+tad+tb])=det([abcd])+det([abtatb])\text{det}\left(\begin{bmatrix}a & b \\ c + ta & d + tb\end{bmatrix}\right) = \text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + \text{det}\left(\begin{bmatrix}a & b \\ ta & tb\end{bmatrix}\right) =det([abcd])+tdet([abab])=\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + t \cdot \text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) det([abab])=0\text{det}\left(\begin{bmatrix}a & b \\ a & b\end{bmatrix}\right) = 0 Therefore: det([abcd])+t0=det([abcd])\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) + t \cdot 0 =\text{det}\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right) 3. The determinant of a matrix in upper triangular, or lower triangular, form is equal to the product of the values on the diagonal. det([a0cd])=ad\text{det}\left(\begin{bmatrix}a & 0 \\ c & d\end{bmatrix}\right) = a \cdot d and det([ab0d])=ad\text{det}\left(\begin{bmatrix}a & b \\ 0 & d\end{bmatrix}\right) = a \cdot d As a simpler case, let's prove that the determinant of a diagonal matrix is the product of the diagonal. Let A=([a00d])A = \left(\begin{bmatrix}a & 0 \\ 0 & d\end{bmatrix}\right) Using basic property 1 and 2a: det(A)=addet([1001])\text{det}(\textbf{A}) = a d \cdot \text{det}\left(\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\right) (Property 2) The determinant of the identity matrix is 1 (property 1). Therefore: det(A)=ad1=ad\text{det}(\textbf{A}) = a d \cdot 1 = a d This property can be extended to matrices in upper or lower triangular form using derived property 2. We can reduce a matrix in upper or lower triangular form to diagonal form by multiplying and adding rows to have 0's above all pivots.

Last updated