Example Problems

Example 1

Show whether, for all x,yRx, y \in \mathbb{R}, [xy0]\begin{bmatrix}x \\ y \\ 0\end{bmatrix} forms a subspace of R3\mathbb{R}^3.

Property 1:

Let u=[x1y10]\vec{u} = \begin{bmatrix}x_1 \\ y_1 \\ 0\end{bmatrix} and v=[x2y20]\vec{v} = \begin{bmatrix}x_2 \\ y_2 \\ 0\end{bmatrix} for any x1,x2,y1,y2Rx_1, x_2, y_1, y_2 \in \mathbb{R}. We observe that u\vec{u} and v\vec{v} are in the subspace.

u+v=[x1x20]+[x2y20]=[x1+x2y1+y20]\vec{u} + \vec{v} = \begin{bmatrix}x_1 \\ x_2 \\ 0\end{bmatrix} + \begin{bmatrix}x_2 \\ y_2 \\ 0\end{bmatrix} = \begin{bmatrix}x_1 + x_2 \\ y_1 + y_2 \\ 0\end{bmatrix}

[x1+x2y1+y20]\begin{bmatrix}x_1 + x_2 \\ y_1 + y_2 \\ 0\end{bmatrix} is clearly in the subspace, so property 1 is satisfied.

Property 2:

Let u=[xy0]\vec{u} = \begin{bmatrix}x \\ y \\ 0\end{bmatrix} and cRc \in \mathbb{R}.

cu=c[xy0]=[cxcy0]c\vec{u} = c\begin{bmatrix}x \\ y \\ 0\end{bmatrix} = \begin{bmatrix}cx \\ cy \\ 0\end{bmatrix}

[cxcy0]\begin{bmatrix}cx \\ cy \\ 0\end{bmatrix} is also in the subspace, so property 2 is satisfied as well.

Therefore, [xy0]\begin{bmatrix}x \\ y \\ 0\end{bmatrix} forms a subspace of R3\mathbb{R}^3.

Example 2

Show whether [101]t+[213]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix}t + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} forms a subspace of R3\mathbb{R}^3 for tRt \in \mathbb{R}.

Property 1:

Let u=[101]1+[213]=[314]\vec{u} = \begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix} \cdot 1 + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} = \begin{bmatrix}3 \\ 1 \\ -4\end{bmatrix} and v=[101]2+[213]=[415]\vec{v} = \begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix} \cdot 2 + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} = \begin{bmatrix}4 \\ 1 \\ -5\end{bmatrix}.

u+v=[314]+[415]=[729]\vec{u} + \vec{v} = \begin{bmatrix}3 \\ 1 \\ -4\end{bmatrix} + \begin{bmatrix}4 \\ 1 \\ -5\end{bmatrix} = \begin{bmatrix}7 \\ 2 \\ -9\end{bmatrix}

Let us try to find the corresponding tt value for [729]\begin{bmatrix}7 \\ 2 \\ -9\end{bmatrix}.

[101]t+[213]=[729]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix} \cdot t + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} = \begin{bmatrix}7 \\ 2 \\ -9\end{bmatrix} [101]t=[516]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix} \cdot t = \begin{bmatrix}5 \\ 1 \\ -6\end{bmatrix}

There is no tRt \in \mathbb{R} that fulfills the equation. Therefore, u+v\vec{u} + \vec{v} is not in the subspace, so [101]t+[213]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix}t + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} does not form a subspace.

Graphically, [101]t+[213]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix}t + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} is a line in R3\mathbb{R}^3 that does not pass through the origin. However, according to the scaling property, 0\vec{0} should always be part of a subspace since we can multiply any u\vec{u} in this subspace with c=0c = 0 to get the zero vector. Therefore, [101]t+[213]\begin{bmatrix}1 \\ 0 \\ -1\end{bmatrix}t + \begin{bmatrix}2 \\ 1 \\ -3\end{bmatrix} is not a valid subspace.

If WW is a subset of vectors but 0∉W\vec{0} \not\in W, then WW is not a valid subspace.

Example 3

Show that the null space of an m×nm \times n matrix A\textbf{A} forms a subspace of Rn\mathbb{R}^n.

Let u,vNull(A)\vec{u}, \vec{v}\in \text{Null}(\textbf{A}). Then Au=0\textbf{A}\vec{u} = \vec{0} and Av=0\textbf{A}\vec{v} = \vec{0}.

Property 1:

Let us check whether u+v\vec{u} + \vec{v} is in the null space of A\textbf{A}.

A(u+v)=Au+Av=0+0=0\textbf{A}(\vec{u} + \vec{v}) = \textbf{A}\vec{u} + \textbf{A}\vec{v} = \vec{0} + \vec{0} = \vec{0}

Therefore, property 1 is satisfied.

Property 2:

Let us check whether cuc\vec{u} is in the null space of A\textbf{A} for any cRc \in \mathbb{R}.

A(cv)=cAv=c0=0\textbf{A}(c\vec{v}) = c\textbf{A}\vec{v} = c\vec{0} = \vec{0}

Therefore, property 2 is satisfied as well, so the null space of a matrix forms a subspace.

Fundamental Subspaces

What and why

For each matrix, there are four fundamental subspaces: the column space, the null space, the row space, and the left null space. In this section, we will explore the properties of each of these subspaces and see how they relate to one another.

Column space

The column space, or rank, of an m×nm \times n matrix A\textbf{A} refers to the range of A\textbf{A}, or the span of its column vectors.

Col(A)={AvRmvRn}=span{a1,a2,,an}\text{Col}(\textbf{A}) = \{\textbf{A}\vec{v} \in \mathbb{R}^m \mid \vec{v} \in \mathbb{R}^n\} = \text{span}\left\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\right\}

We can visualize the column space as the set of all vectors that are the "output" of the linear transformation given by A\textbf{A}.

We note that the column space of A\textbf{A} is a subspace of Rm\mathbb{R}^m. The dimension of the column space of A\textbf{A} is the number of pivots, or the number of linearly independent column vectors, in A\textbf{A}.

Null space

The null space of an m×nm \times n matrix A\textbf{A} refers to all vectors that map to the zero vector 0\vec{0} when the linear transformation given by A\textbf{A} is applied on these vectors.

Null(A)={vRnAv=0}\text{Null}(\textbf{A}) = \{\vec{v} \in \mathbb{R}^n \mid \textbf{A}\vec{v} = \vec{0}\}

We note that the null space of A\textbf{A} is a subspace of Rn\mathbb{R}^n. The dimension of the null space of A\textbf{A} is the number of free variables in the row echelon form of A\textbf{A}.

Row space

The row space of an m×nm \times n matrix A\textbf{A} refers to range of AT\textbf{A}^T, or the span of its row vectors.

Row(A)={ATvRnvRm}=span{r1T,r2T,,rmT}\text{Row}(\textbf{A}) = \{\textbf{A}^T\vec{v} \in \mathbb{R}^n \mid \vec{v} \in \mathbb{R}^m\} = \text{span}\left\{\vec{r}_1^T, \vec{r}_2^T, \ldots, \vec{r}_m^T\right\}

We note that the row space of A\textbf{A} is a subspace of Rn\mathbb{R}^n. The dimension of the row space of A\textbf{A} is the number of pivots in A\textbf{A} since the number of pivots in A\textbf{A} equals the number of pivots in AT\textbf{A}^T after row reduction.

Left null space

The left null space of an m×nm \times n matrix A\textbf{A} refers to all vectors that map to the zero vector 0\vec{0} when the linear transformation given by AT\textbf{A}^T is applied on these vectors.

Null(AT)={vRmATv=0}\text{Null}(\textbf{A}^T) = \{\vec{v} \in \mathbb{R}^m \mid \textbf{A}^T\vec{v} = \vec{0}\}

We note that the left null space of A\textbf{A} is a subspace of Rm\mathbb{R}^m. The dimension of the null space of A\textbf{A} is the number of free variables in the row echelon form of AT\textbf{A}^T.

This subspace is called the left null space (while the "usual" null space is sometimes called the right null space) because ATv=0    vTA=0T\textbf{A}^T\vec{v} = \vec{0} \implies \vec{v}^T\textbf{A} = \vec{0}^T. In the latter equation, we are multiplying the vector vT\vec{v}^T on the left of the matrix A\textbf{A}.

Dimensions

Let rr denote the number of pivots in an m×nm \times n matrix A\textbf{A}. Then we quickly observe the following:

dim(Col(A))=r;dim(Null(A))=nr\dim(\text{Col}(\textbf{A})) = r; \dim(\text{Null}(\textbf{A})) = n - r dim(Col(AT))=r;dim(Null(AT))=mr\dim(\text{Col}(\textbf{A}^T)) = r; \dim(\text{Null}(\textbf{A}^T)) = m - r

Note that dim(Col(A))+dim(Null(A))=n\dim(\text{Col}(\textbf{A})) + \dim(\text{Null}(\textbf{A})) = n. This is called the Rank Theorem.

You should also note the two following equations:

  1. Terms in Rm\mathbb{R}^m: dim(Col(A))+dim(Null(AT))=m\dim(\text{Col}(\textbf{A})) + \dim(\text{Null}(\textbf{A}^T)) = m

  2. Terms in Rn\mathbb{R}^n: dim(Null(A))+dim(Col(AT))=n\dim(\text{Null}(\textbf{A})) + \dim(\text{Col}(\textbf{A}^T)) = n

Using orthogonal complements, we can show why these two equations are guaranteed to be true.

Orthogonal complements

Let us examine the null space of an m×nm \times n matrix A\textbf{A}.

We know that for every vector vNull(A)\vec{v} \in \text{Null}(\textbf{A}),

Av=0\textbf{A}\vec{v} = \vec{0}

Using the row vectors of A\textbf{A}, we get

Av=[r1Tr2TrmT]v=0\textbf{A}\vec{v} = \begin{bmatrix}\vec{r}_1^T \\ \vec{r}_2^T \\ \vdots \\ \vec{r}_m^T\end{bmatrix}\vec{v} = \vec{0}

Writing out each component, we get r1Tv=r2Tv==rnTv=0\vec{r}_1^T\vec{v} = \vec{r}_2^T\vec{v} = \cdots = \vec{r}_n^T\vec{v} = 0. We observe that these are just inner products, so r1,v=r2,v==rm,v=0\langle \vec{r}_1, \vec{v} \rangle = \langle \vec{r}_2, \vec{v} \rangle = \cdots = \langle \vec{r}_m, \vec{v} \rangle = 0. This means that v\vec{v} is orthogonal to all of the row vectors of A\textbf{A}.

Given that vNull(A)\vec{v} \in \text{Null}(\textbf{A}), we note that the null space of A\textbf{A} is orthogonal to the row space of A\textbf{A}.

Since these two subspaces are orthogonal to each other, from the equation dim(Null(A))+dim(Col(AT))=n\dim(\text{Null}(\textbf{A})) + \dim(\text{Col}(\textbf{A}^T)) = n, we see that Null(A)+Col(AT)=Rn\text{Null}(\textbf{A}) + \text{Col}(\textbf{A}^T) = \mathbb{R}^n.

Therefore, we call Null(A)\text{Null}(\textbf{A}) and Col(AT)\text{Col}(\textbf{A}^T) orthogonal complements because

  1. they are orthogonal to each other and because

  2. they span Rn\mathbb{R}^n.

Similarly, let us examine the left null space of A\textbf{A}.

We know that for every vector vNull(AT)\vec{v} \in \text{Null}(\textbf{A}^T),

ATv=0    vTA=0T\textbf{A}^T\vec{v} = \vec{0} \implies \vec{v}^T\textbf{A} = \vec{0}^T

Using the column vectors of A\textbf{A}, we get

vTA=vT[a1a2an]=0T\vec{v}^T\textbf{A} = \vec{v}^T\begin{bmatrix}\vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n\end{bmatrix} = \vec{0}^T

Writing out each equation, we get, just like above, v,a1=v,a2==v,an=0\langle \vec{v}, \vec{a}_1 \rangle = \langle \vec{v}, \vec{a}_2 \rangle = \cdots = \langle \vec{v}, \vec{a}_n \rangle = 0.

Therefore, v\vec{v} is orthogonal to each column vector of A\textbf{A}. Using similar reasoning as above, we conclude that the column space of A\textbf{A} and the left null space of A\textbf{A} are orthogonal complements because

  1. they are orthogonal to each other and because

  2. they span Rm\mathbb{R}^m.

Last updated